Wind Turbine Active Power Control Based on Multi-Model Adaptive Control
نویسندگان
چکیده
This paper proposes a multiple model adaptive control method of wind turbine active power that considers the complexity of the control model, nonlinear and strong coupling. The model is designed to reduce the negative influences of wind turbines in the process of active power control caused by different uncertain factors. We first build the multiple model of turbine operating by using subtracting cluster algorithm, based on data of a 1.5MW doubly-fed inductor generators (DFIGs) in a wind farm in Gansu, China. We use recursive least squares (RLS) algorithm to identify local model parameters. In addition, the controller is designed by adopting online optimal control model which based on a weighted index of output matching switching strategy. The controller is to realize multi-model adaptive control (MMAC). Results show that the proposed method has good control performance. The method can effectively solve the problems of wind turbines nonlinear modeling and active power control in operation.
منابع مشابه
Power and Velocity Control of Wind Turbines by Adaptive Fuzzy Controller during Full Load Operation
Research on wind turbine technologies have focused primarily on power cost reduction. Generally, this aim has been achieved by increasing power output while maintaining the structural load at a reasonable level. However, disturbances, such as wind speed, affect the performance of wind turbines, and as a result, the use of various types of controller becomes crucial.This paper deals with two ada...
متن کاملImprovement Performances of Active and Reactive Power Control Applied to DFIG for Variable Speed Wind Turbine Using Sliding Mode Control and FOC
This paper deals with the Active and Reactive Power control of double-fed induction generator (DFIG) for variable speed wind turbine. For controlling separately the active and the reactive power generated by a DFIG, field oriented control (FOC) and indirect sliding mode control (ISMC) are presented. These non linear controls are compared on the basis of topology, cost, efficiency. The main cont...
متن کاملDifferent Types of Pitch Angle Control Strategies Used in Wind Turbine System Applications
The most common controller in wind turbine is the blade pitch angle control in order to get the desired power. Controlling the pitch angle in wind turbines has a direct impact on the dynamic performance of the machine and fluctuations in the power systems. Due to constant changes in wind speed, the wind turbines are of nonlinear and multivariate system. The design of a controller that can ad...
متن کاملOptimal Torque Control of PMSG-based Stand-Alone Wind Turbine with Energy Storage System
In this paper optimal torque control (OTC) of stand-alone variable-speed small-scale wind turbine equipped with a permanent magnet synchronous generator and a switch- mode rectifier is presented. It is shown that with OTC method in standalone configuration, power coefficient could be reached to its maximum possible value, i.e. 0.48. An appropriate control algorithm based on turbine characterist...
متن کاملWind Turbine Transformer Optimum Design Assuming a 3D Wound Core
A wind turbine transformer (WTT) is designed using a 3D wound core while the transformer’s total owning cost (TOC) and its inrush current performance realized as the two objective functions in a multi-objective optimization process. Multi-objective genetic algorithm is utilized to derive Pareto optimal solutions. The effects of inrush current improvement on other operating and design parameters...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015